17 research outputs found

    Modeling a description logic vocabulary for cancer research

    Get PDF
    AbstractThe National Cancer Institute has developed the NCI Thesaurus, a biomedical vocabulary for cancer research, covering terminology across a wide range of cancer research domains. A major design goal of the NCI Thesaurus is to facilitate translational research. We describe: the features of Ontylog, a description logic used to build NCI Thesaurus; our methodology for enhancing the terminology through collaboration between ontologists and domain experts, and for addressing certain real world challenges arising in modeling the Thesaurus; and finally, we describe the conversion of NCI Thesaurus from Ontylog into Web Ontology Language Lite. Ontylog has proven well suited for constructing big biomedical vocabularies. We have capitalized on the Ontylog constructs Kind and Role in the collaboration process described in this paper to facilitate communication between ontologists and domain experts. The artifacts and processes developed by NCI for collaboration may be useful in other biomedical terminology development efforts

    Overview and Utilization of the NCI Thesaurus

    Get PDF
    The NCI Thesaurus is a reference terminology covering areas of basic and clinical science, built with the goal of facilitating translational research in cancer. It contains nearly 110 000 terms in approximately 36000 concepts, partitioned in 20 subdomains, which include diseases, drugs, anatomy, genes, gene products, techniques, and biological processes, among others, all with a cancer-centric focus in content, and originally designed to support coding activities across the National Cancer Institute. Each concept represents a unit of meaning and contains a number of annotations, such as synonyms and preferred name, as well as annotations such as textual definitions and optional references to external authorities. In addition, concepts are modelled with description logic (DL) and defined by their relationships to other concepts; there are currently approximately 90 types of named relations declared in the terminology. The NCI Thesaurus is produced by the Enterprise Vocabulary Services project, a collaborative effort between the NCI Center for Bioinformatics and the NCI Office of Communications, and is part of the caCORE infrastructure stack (http://ncicb.nci.nih.gov/NCICB/core). It can be accessed programmatically through the open caBIO API and browsed via the web (http://nciterms.nci.nih.gov). A history of editing changes is also accessible through the API. In addition, the Thesaurus is available for download in various file formats, including OWL, the web ontology language, to facilitate its utilization by others

    Missing lateral relationships in top‑level concepts of an ontology

    Full text link
    Background: Ontologies house various kinds of domain knowledge in formal structures, primarily in the form of concepts and the associative relationships between them. Ontologies have become integral components of many health information processing environments. Hence, quality assurance of the conceptual content of any ontology is critical. Relationships are foundational to the definition of concepts. Missing relationship errors (i.e., unintended omissions of important definitional relationships) can have a deleterious effect on the quality of an ontology. An abstraction network is a structure that overlays an ontology and provides an alternate, summarization view of its contents. One kind of abstraction network is called an area taxonomy, and a variation of it is called a subtaxonomy. A methodology based on these taxonomies for more readily finding missing relationship errors is explored. Methods: The area taxonomy and the subtaxonomy are deployed to help reveal concepts that have a high likelihood of exhibiting missing relationship errors. A specific top-level grouping unit found within the area taxonomy and subtaxonomy, when deemed to be anomalous, is used as an indicator that missing relationship errors are likely to be found among certain concepts. Two hypotheses pertaining to the effectiveness of our Quality Assurance approach are studied. Results: Our Quality Assurance methodology was applied to the Biological Process hierarchy of the National Cancer Institute thesaurus (NCIt) and SNOMED CT’s Eye/vision finding subhierarchy within its Clinical finding hierarchy. Many missing relationship errors were discovered and confirmed in our analysis. For both test-bed hierarchies, our Quality Assurance methodology yielded a statistically significantly higher number of concepts with missing relationship errors in comparison to a control sample of concepts. Two hypotheses are confirmed by these findings. Conclusions: Quality assurance is a critical part of an ontology’s lifecycle, and automated or semi-automated tools for supporting this process are invaluable. We introduced a Quality Assurance methodology targeted at missing relationship errors. Its successful application to the NCIt’s Biological Process hierarchy and SNOMED CT’s Eye/vision finding subhierarchy indicates that it can be a useful addition to the arsenal of tools available to ontology maintenance personnel

    The mouse-human anatomy ontology mapping project.

    Get PDF
    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit
    corecore